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The method of matched asymptotic expansions is used to obtain two approxi- 
mations for the rate of steady thermal propagation of a flame front through a 
homogeneous, gaseous fuel mixture. The coefficients ofheat conductivity and di f- 

fusion, and the density of the medium, are assumed to be functions of the tem- 

perature and concentration of the reacting substance in the gas. An analytic 

relationship between the flame velocity and the gradients of these functions at 

the hot boundary of the combustion zone is established. The formulas derived 
in p, 21 represent particular cases of the expression obtained in the present 

paper for the flame velocity. 

1. Equrtionl and boundary conditions. In the coordinate system moving 
with the velocity of the flame, the equations of the steady thermal flame propagation 

in a homogeneous gaseous mixture can be written, under a number of simplifying assump- 

tions, in the form d i. (I?’ \ 
-z c 11x i 1 

-- (1.1) 

(1.2) 

x=---x . T=T_, u=a_; .X=-Q, %=a=0 (1.3) 

Here T is the temperature, (I is the concentration of the reacting substance, m is the 

mass rate of flame propagation and also the eigenvalue of the problem (1.1) - (1.3), 
c is a constant representing heat capacity of the gas, p = p (T, a) is the gas density, 

IL is the order of reaction, D 7 D (T, a) is the diffusion coefficient, L = 3, (T, CL) 
is the heat conductivity coefficient, 0 (T) expresses the temperature dependence of 

the rate of chemical reaction, T_ is the initial temperature of the gas, a_ is the initial 
concentration and h = const is the heat effect of the reaction. 

The system (1.1) and (1.2) has the following first integral 

;. d7’ _ - _ .-‘! !,I) 2 - II/ ( T t -‘$ 
J 

= const 
c t?x 

(1.4) 

From (1.4) and from the conditions (dT / &) , s := (cla i dx) _ u = 0 which follow 
from (1.2). we find 

~FD~=,,i(T+~-T+~--$~, T+-T_+F (1.5) 

The minus and plus subscripts denote the quantity at the cold and hot boundary of the 

zone of combustion. 
Let us introduce the following dimensionless variables in the Eqs. (1.1) and (1.5) 
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equivalent to the system (1. l), (1.2) : 

T=((T--_)/(T+- T-)7 y=(a_--)/a_ 

and pass from the independent variable 2 to the independent variable ‘F , and to the 

new unknown function p= h dr -- 
c ax 

Then (1. l), (1.5) and (1.3) will be replaced by 

P 
dP -- 
dz mP+ + p”an-l (1 - y)” 0 (z) = 0 (1.6) 

N (z, y) = -k- 
DLpo (1.7) 

T=O, P=O, y=o; T=l, P=O, y=l (1.8) 

Let us specify the form of the function @ (T), assuming that the dependence of the 
rate of chemical reaction of temperature obeys the Arrhenius law 

CD(T) = Aexp+$ (1.9) 

Here E is the activation energy, R is the gas constant and A is a frequency factor. 
Taking (1.9) into account we can write (1.6) in the form 

p dP _ lrzp + e+K (t ZJ) (1 - y)” exp - ’ (I - r) = 0 
dz , tjrj 

(1.10) 

.I%-1 

K (z, y) = < hA, 
T-C 

5 = -j--z-, P=-& 

Let 
q = P exp p/a, M = m exp 812 

Then the problem (1.6) - (1.8) assumes the form 

d9 
q ok --Mq+K(r,y)(l-y)“esp-;(;;“=O (1.11) 

dy - = LN (z, y) M y + LN (z, y) 
dz 

(1.12) 

T = 0, q=y=o (1.13) 

T=l, q=o, y=l (1.14) 

We note that the boundary value problem written in the form (1.11) - (1.14) has no 

solution, since the function (1.9) does not vanish when T = T_ (so-called difficulty 
connected with the cold boundary p, 31). In the theory of thermal flame propagation 
it is usually assumed that the dependence of the rate of combustion on temperature has 
the form (1.9) everywhere except in a certain temperature interval T, < T < T” < 
T +, in which @ (7’) = 0. This ensures the existence of a solution of the problem 

(1.11) - (1.14) D, 41. In the present paper Eqs. (1.11) and (1.12) are used in an appro- 
ximate form such, that the difficulty connected with the cold boundary is automatically 
overcome. 

2. Method of aolutidn. Equation (1.11) contains a dimensionless parameter 

p, which is usually much larger than unity. Its typical values are p z 10. This makes 
possible to obtain an approximzte solution of the problem by the method of matching 
asymptotic expansions [5]. The form of Eqs. (1.11) and (1.12) implies that the interval 
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of variation 0 < z < 1 of the variable can be split into two sub-intervals. In the first 

sub-interval adjacent to Z = 0 and constituting the major portion of the interval (the 

outer region) the third term in (1.11) is substantially smaller than the remaining terms 

since it contains an exponentially decreasing factor, the exponential index being of the 

order of 0. In the second sub-interval adjacent to 7 = 1 (the inner region) large va- 

lues of fl in the exponential index are compensated by the smallness of the quantity 

(1 - T), therefore the third term in (1.11) becomes significant. In order to determine 

the order of magnitude of each term of (1.11) and (1.12) in the inner region, we intro- 

duce the variable ‘t* = p (1 - r). Then (l.ll), (1.12) and (1.14) become 

ClY - = J-‘L/v (1 - P-h*, y) 
rlr, 

-pt - p-1 ‘6* - Y) - 1 I (2.2) 

IT* = 0, (I = 0. y=l (2.3) 

We shall seek a solution of the problem in the outer and inner region in the form of 
expansions in powers of a small parameter p--l. 

In the inner region we have 

4* (t*) = Go (P) 40 (r*) t G $9 Ql CT*) + - ’ * 

y, (t*) = Fo (P) Y, (r*j + F, (8 yt (t*) + F, (P) 4% @A + 8 . 

(2.‘t) 

and in the outer region 

‘I” CT) = go 0) q(O) (r) t g, (P) q(l) (q + * * . 

Y* (q = ro(BjYc"'(q -t-/‘(~)Y(~)(q + f.L(;qy(.qT) + . . . (2.5) 

The expansions for the eigenvalue M is the same in both zones 

M = a, (fl) MO + a, (p) .lI, + . . . (2.G) 

The coefficients dependent on p in the expansions (2.4) - (A. 6) must satisfy the follow- 
ing conditions for p -+ 00 : 

C;,, rid 
0 

----F-t, ~ 
ci Pi 

-+ 0, Dli-l-+~), 
si 

-_+o, 3LL30 iid 

(2.7) 

ii Zi 
(i = 0, 1, 2, . ..j 

The functions Qi(r*) and y/i (r*) are determined successively from Eqs. (2. l), (2.2) 

and boundary condition (2.3) while the functions @‘) (t) and y(‘) (z) are obtained from 

(1. ll), (1.12) and boundary condition (1.13). The still undetermined arbitrary constants 
and terms of the series (2.6) defining the eigenvalue Al! of the problem are found from 

the condition of matching the inner (2.4) and outer (2.5) expansions. The matching 
procedure consists of requiring that the corresponding terms of the asymptotic expansions 

for Q* (r,) and Y, (r,) with r* -+ 00 and for q* (r) and y* (r) with t + 1 , coincide. 
The form of the coefficients Gi, F,, gi, lt and ai is determined from the boundary 

and the matching conditions. 

In the course of analysis it is assumed that the functions I< (r, y) and ;t’ (T, y) as 

well as their derivatives with respect to T and y are continuous and bounded functions 

and that they are of the order of unity, as are 1, and ??. 

3. Zcroth order approximation for the flame propagation velo- 

city. Let us insert the expansions (2. 5) and (2.6) into (1.11). Since the relations 
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ev (-- PI / fi (B) + 0, exp (- PI / gi (B) -+ 0, 
exp (- B) I ai (IV -+ 0 

hold for p --f 00, the approximate equation for 4 in the outer region can be written in 
the form 

q* dq*/ch - Mq* = 0 (3.1) 

Out of the two solutions of (3.1) satisfying the condition (1.13) we choose. in accordance 
with the physical sense of the problem, the solution 

q* = MT (3.2) 

From (3.2) it follows that a, (p) = g, (p), 
o,(P) = &WV. * * (3.3) 

q’o’ (7) = M,,T, q(l) (T) = M,z, . . . 
Inserting (3.2) into (1.12) we obtain the approximate equation for the function Y (‘C) 
in the outer region dY* - = LN (7, y”) $ 

dz (3.4) 

Substituting (2.5) into (3.4) and discarding the terms of higher order than fa (p), we 
obtain the following equation for Y(s) (7): 

dy(O) 
-= 

dz L N (z, joy(o)) $- (3.5) 
Equation (3.5) defines, in the zeroth order approximation, the distribution of concentra- 

tion near the cold boundary of the zones of combustion and has bounded solutions Y(O) (r) 
in the interval 0 < z < 1. Since the point.7 = O,$ = 0 is a node type singularity, 

the boundary condition(l.13) is insufficient for selecting the unique solution of (3.5). 
Using (3.3) and (3.5), we can write the single-term outer expansions of go (p) q(O) (r) 

and fo (B) Y (0) 't with ‘G * 1 as functions of the inner variable ‘G* ( 1 

gaq(O) (7) = gaMot = goMo - /3-‘goMo~, (3.6) 
fey@) (z) = joy(O) (1) - p-lfoLy,‘$ z, + . . . 

The matching condition (3.6) and the inner expansions lead us to the conclusion that 

Go (PI = go (P) = uo (i% Fo (P> = fo 6% G (P, = P-2, (P), F, (PI = P-‘fo (B) 

The boundary condition (2.3) implies that 
(3.7) 

F,(P) = 1 (3.8) 

Inserting the expansions (2.4) into (2.2) and collecting the terms of like order of small- 

ness we obtain, with (3.7) and (3.8) taken into accent, 

dy,idT,. = 0, dy,ldT, = -L (3.9) 

The solutions of (3.9) satisfying the condition (2.3) have the form 

Yo CT*> = 1, Yl (%*I = --LT* 
(3.10) 

Substituting the expansions (2.4) into (2.1) and taking (3.7), (3.8) and (3.10) ipto ac- 
count, we obtain the following equation for the terms of the smallest order in l3-l : 

Go2 (p) q. 2 = ;3--!I~~OLn~+r** exp - r* 
c+i 

(3.11) 

From (3.11) it follows that 

Go (p) = p--lt+t,a (3.12) 
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A solution of (3.11) satisfying the boundary condition (2.3) has the form 

402 (z,) = 2L”K+ (5 + I)]‘+17 (n + 1, -&) 

7 (n, 2) = I‘(n) - r (n, z), r (n, 2) = 5 P--l e-t d2 
z 

r (n, I)) 3 r (n) 

(3.13) 

The condition of matching the zero order terms of the inner and outer expansion of 
Q (T), the terms defined by the formulas (3.3) and (3.13). respectively, yields the zeroth 

term of the expansion for the kigenvalue M of the problem 

M,2 = 2L”K+ (a + l)n+l r (n + 1) (3.14) 

In the dimensional variables the zeroth order approximation for the mass propagation 
of the combustion front has the form 

m. = 
[ 
2Lnr (n + 1) + p+nPrl (*)nil (-&)++l) exp -+$-I I’* (3.15) 

+ 

When L = 1 , the formula (3.15) becomes identical with the formula for the velocity 

of combustion established in [ 11. 

4. First order approximation for the flame proprgrtlon velo- 
city. To determine the second term in the expansion (2.6) we must find the coeffi- 

cients al (I% = & (B>, f1 @), G, (B), g, (B), J’z (0) and functions Q1 (@,q%J 
y(l) (-G) and ~2 (x+.). From (3.7) and.(3.12) it follows thar 

G,(P) = $-(W3K4 (4.1) 

The two-term inner expansion of y (T,) has, in accordance with (3.10). the form 

y (T*) = 1 - p-‘Lz, (4.2) 

The function (4.2) matches completely the two-term expansion of the function y(O) (T) 

given by the formula (3.6). provided that we take (3.7) and (3.8) into account and set 
y(O) (1) = 1. From the condition of matching (4.2) and y(O) (z) it follows that the 

expansion for y (r) in the outer region contains no terms of the order of b-l. We should 
therefore set 

fl (P) = P-“, Y CT) = Y(O) (7) + P-“Y(‘) (Q (4.3) 

When ‘t -+ 1, the expansion (4.3) written as a function of the inner variable ‘c* has 
the form 

y” (z) = 1 - y-‘Lz* + p-2L [~~)t + L ($gt + L - I] Jg + 

+ fPy(‘) (1) + . . . (4.4) 

The quantity y 0) (1) appearing here must be determined in the course of matching 
the outer and inner expansions anaIogously to y (‘1 (‘I) in (3.6). In accordance with 

(4.4) we set 
Fz (P> = B-” (4.5) 

Inserting the expansions (2.4) into (2.2), taking (3.7), (3.8), (3. lo), (3.12 - 3.14) and 
(4.5) into account and collecting the terms of the order of fiB2 we obtain 

- =L(L-l)w(?z+l)~-“~ (n+l,-&)z*+ dy2 

d% 
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+ L [($)+ f- L ( %)+I % (4.6) 

Solution of (4.6) satisfying the boundary condition (2.3) has the form 

(~+O-‘+. 

Ys (t*) = L (L - 1) (3 + 1)a P’s (n + 1) 1 T-‘/l (n + 1,z) z a.2 + 

+ L [(%)+ + L(F[+] y (4.7) 

Using (4.7) we find from the condition of matching y (r*) = i- p-l&+ p-sys (z*) 
with (4.4), that 

y”‘(i)=L(L-q(s+ 1)z~Ir’i.(n+l)?-.h(n+l,z)--1]zdz (4.8) 
0 

The condition (4.8) defines, similarly to the condition I,PJ (1) = 1, the unique solu- 

tion of the problem (3.4) and (1.13). 
After substituting the expansions (2.4) into Eq. (2.1). selecting the terms of like order 

of smallness and taking into account the previously derived results for the function 

q1 ($J, we obtain 

* + M,,q,-, + L’k*“K+ {[(q&y+ +L(F)+] r* + 

2 + (& 
+ *} e-r*/@+l) 

* 
(4.9) 

where the functions q,, (‘c*) and y, (Q have the form given by (3.13) and (4.7) res- 
pectively. Integrating (4.9) we obtain 

(a+l)-% 

- L”K+ (5 +;l)“+lT [rz + 3, “-) - 
a+1 

- Lvc, [(=&y+ + (4.10) 

+L(s&!y+++(~)+++(~)+] (~+1)“+++2$&)- 

(a+l)-'r* + 

- LnK+n(L - I)(3 + l)n+",J?(n + 1) s s+ (n + i,~)zdzt~-~e-~ dt 

0 0 

The condition of matching the functions q(O) (T) + j3-lq(l) (T) = M,z + f3-l.M,~ 
with 40 (za) f p-lqi (r,) yields 

Mt = + { 2 (c + 1) Jl (n) - (n + 2) (n + 1) - (5 + 1) (n + 1) [( *)+ + 

-(~$_I)W--l)J2(~)~ 



628 V.S.Berman and Iu.S.Rlazantsev 

When IZ = 1 and n = 2, the integrals J, and J2 are respectively: 

J, (1) = 1.344, J, (2) = 2.114; J2 (1) = 2, J:! (2) c= 8.885 

The two-term asymptotic formula for the mass flame front propagation velocity has the 

form ,,, -= 'j-(lZ-t1)'2 (M, + p-‘lw,) exp $ (4.22) 

In the case of II. == 1, K =- const and N = consl, considered in [2], we have 

M, I_ &1, (a 1) J, (1) - 3M, - (L - 1) 114, (a + 1) (4.lS) 

It was shown in p] that the two-term asymptotic expansion (4.13) for rn gives good 

agreement with the results obtained by numerical methods for fi > 3. The formulas 

(4. l), (3.14) and (4.13) yield a two-term asymptotic expansion for the combustion velo- 

city for an arbitrary value of 12 and for a medium whose properties depend on the tem- 

pera ture and concentration. 

From (3.14) and (4.11) it follows that the dependence of the properties of the medium 

on temperature and concentration is described by the manner in which the second term 

of the asymptotic expansion for the combustion velocity depends on the values of the 

gradients of the properties of the medium at the hot boundary of combustion. 
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